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Abstract: Generalizing the idea of hep-th/0509015 by Berenstein, Correa, and Vázquez,

we study many-magnon states in an SU(2) sector of a reduced matrix quantum mechanics

obtained from N = 4SU(N) super Yang-Mills on R × S3. Generic Q-magnon states are

described as a chain of “string-bits” joining Q+1 eigenvalues of background matrices which

form a 1/2 BPS circular droplet in the large N limit. We will concentrate on infinitely long

states whose first and last eigenvalues localize at the edge of the droplet. Each constituent

string-bit has a complex quasi-momentum in general, while the total quasi-momentum

P of the state is real. For given Q and P , the minimum energy of the chain of string-

bits is realized when the Q + 1 eigenvalues are equally spaced on one and the same line

segment joining the two outmost eigenvalues localized on the edge with angular difference

P . Such configuration of bound string-bits precisely reproduces the dispersion relation for

dyonic giant magnons in classical string theory. We also show the emergence of two-spin

folded/circular strings in special infinite spin limit as particular configurations of closed

chains of string-bits.
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1. Introduction

The correspondence between the type IIB string theory on AdS5 × S5 and the four-

dimensional N = 4SU(N) super Yang-Mills theory (SYM) is the best studied example

of the AdS/CFT correspondence [1]. Lots of tests have been done to see if it is an exact

quantum duality, and if so, why should it be the case. So far there has been no apparent

breakdown of the duality, and one can naturally seek for the ways to reconstruct not only

the geometries where the string theory is defined but also the massive string modes on

them, from what we have in the dual SYM theory. The first step toward the program was

taken in [2 – 5], where new light on the duality was shed from matrix theory point of view,

without the apparent need of integrability.1 In [6], Lin, Lunin, and Maldacena (LLM) clas-

sified all the 1/2 BPS solutions in the type IIB supergravity in terms of certain boundary

conditions or “droplets”, which confirmed the earlier classifications of corresponding SYM

operators by Berenstein [7]. Recently in [8], a new way to reconstruct the 1/2 BPS metrics

from the dilatation operators of SYM side has been proposed.

It is also important to study massive string modes on those geometries. In [3], Beren-

stein, Correa, and Vázquez (BCV) showed a useful approach to compute the anomalous di-

mension of Berenstein-Maldacena-Nastase (BMN) states [9] at strong coupling. They used

a gauged matrix quantum mechanics to reproduce the geometry of S5 and described the

BMN states by using the so-called “string-bits”, which correspond to off-diagonal modes

of the matrices. Their formalism with a simple saddle point approximation lead to the

BMN energy formula to all-order in the ’t Hooft coupling λ ≡ g2
YMN quite successfully.

Actually they could also imply the existence of the so-called giant magnon of Hofman and

1 By contrast, in recent years much progress in testing the AdS/CFT has been based on integrable

structures of both theories, particularly the ones that can be captured by the Bethe ansatz method.
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Maldacena [10], which is an open string solution with an infinite angular momentum.2

This idea was further developed in [11] by Vázquez, where it was shown how the giant

magnons, or its three-spin generalization, can appear in terms of the string-bit picture.

For the SU(2) sector it was also shown how one can match the canonical structure of the

string-bits and the quadratic Hamiltonian of the matrix model with their counterparts in

the classical string theory side.

In this note, we give further examples of such direct identification between the string

theory and the matrix model. One of the examples of our concern in the string side

of the correspondence will be the dyonic giant magnons studied in [12 – 20], and other

illustrations will be the limiting cases of the two-spin folded/circular strings of Frolov and

Tseytlin [29, 30]. These solutions will be constructed from dyonic giant magnons, so let us

here make some remarks on the dyonic giant magnons. They are classical string solutions

in the so-called Hofman-Maldacena sector [10] with two large angular momenta or spins

on S5. One of the spins is sent to infinity while the other can be finite, and the energy is

also infinite. More precisely, we can obtain the dyonic giant magnon in the limit

EDGM → ∞ , J1 → ∞ , EDGM − J1 : fixed , J2 ∼
√

λ : fixed À 1 , ∆ϕ : fixed ,

(1.1)

where J1 and J2 are the two spins on S5, EDGM is the energy, and ∆ϕ is the angular

differene between two endpoints on an equator of the sphere. The energy-spin relation for

the dyonic giant magnon is given by

EDGM − J1 =

√

J2
2 +

λ

π2
sin2

(

∆ϕ

2

)

. (1.2)

We will see in this two-spin generalized case also, as in the single-spin case, we can utilize

the string-bit picture to describe the classical string solution.

The crucial idea is to allow the eigenvalues (except two) of background matrices that

form string-bits to reside in the interior of the circular droplet. In other words, while we

still take the Hofman-Maldacena limit, we allow the quasi-momentum of each magnon in

the SYM state to be complex in general. The two eigenvalues on the edge of the droplet

represent the “BPS condensates” [11] with infinite number of background matrices, and

the SYM states dual to the dyonic giant magnons should end in the very two eigenvalues

when described as a chain of string-bits.

We will see how this picture works in detail later in section 3. Before doing so, it would

be convenient to review relevant aspects of the earlier works of [3, 11] in the following

section 2. In section 3, we will also discuss the cases of elliptic folded/circular strings, and

also of rational circular strings. Section 4 will be devote to the summary and discussions.

2 For references on (generalizations of) giant magnons, see [12 – 27]. In a recent paper [28], new inter-

polating limit of AdS5 × S5 was considered. It was shown their limit connecting the pp-wave [9] and the

giant magnon [10] regimes could capture many important features of the worldsheet S-matrix of the string

theory.
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2. A review of Berenstein-Correa-Vázquez method

We shall first make a brief review on the method for deriving a dispersion relation for

composite operators in N = 4 SYM at strong coupling a la BCV [3, 11]. We will restrict

ourselves to an SU(2) sector throughout this note.

2.1 The SU(2) matrix quantum mechanics

Let us start with describing the SU(2) matrix model of our concern. It is obtained from

N = 4 SYM on R × S3 whose SU(2) scalar part is defined by the action

SR×S3 =
1

g2
YM

∫

r3dtdΩ3 tr

[

1

2
(Dµφj)

2 − R
12

φ2
j +

1

4
[φj , φk][φj , φk]

]

. (2.1)

Here the suffices j and k run from 1 to 4, and r is the radius of the S3 with the curvature

R = 6/r2. The real scalar fields φj can be expanded by the harmonic functions on S3, of

which we are only concerned with the zero-mode. We can integrate the angular part and

obtain the SU(2) matrix model action, setting r = 2/M ,

S =
2π2

g2
YM

(

2

M

)3 ∫

dt tr

[

1

2
(DtXj)

2 − 1

2

(

M

2

)2

X2
j +

1

4
[Xj ,Xk][Xj ,Xk]

]

. (2.2)

In the above, the matrix fields Xj(t) came from the zero-mode of the scalars φj(t, ~x).

From standard traceless, Hermitian SU(N) generators Tm (m = 1, . . . , N2 − 1) and time-

dependent SO(4)-vectors Xm
j (t) (j = 1, . . . , 4) in the adjoint representation of SU(N), we

can represent the matrix fields as (Xj)
r
s = Xm

j (Tm)rs . Particular choice of the parameter

M = 2 (or r = 1) and redefinition of the fields
√

2π
gYM

(

2
M

)3/2
Xj → Xj take the action to

S =

∫

dt tr

[

1

2
(DtXj)

2 − 1

2
X2

j +
g2
YM

8π2
[Xj ,Xk][Xj ,Xk]

]

. (2.3)

From this action we can obtain the Hamiltonian

H = H0 + V , (2.4)

where the free part H0 and the potential V are given by, respectively,

H0 =
1

2
tr(Πj)

2 +
1

2
tr(Xj)

2 , V = −g2
YM

8π2
tr[Xj ,Xk][Xj ,Xk] . (2.5)

Introducing complex scalar fields Z = 1√
2
(X1 + iX2), W = 1√

2
(X3 + iX4) and the canonical

momenta ΠZ = 1√
2
(Π1 + iΠ2), ΠW = 1√

2
(Π3 + iΠ4), we can rewrite the free and the

potential part of Hamiltonian as3

H0 = tr
(

|ΠZ |2 + |ΠW |2 + |Z|2 + |W |2
)

, V =
g2
YM

2π2
tr

(

|[Z,W ]|2
)

. (2.6)

3 This kind of complex matrix model was originally utilized and developed in [31] to study the 1/2 BPS

states in terms of fermionic picture.
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In (2.6) we omitted the D-term tr
(

|[Z,Z ]|2 + |[W,W ]|2 + |[Z,W ]|2
)

from the potential.

It is because we assume the contribution of the D-term is canceled by that of gluon

exchange even at all-loop level in the ’t Hooft coupling as in the one-loop case (see,

e.g.,Constable:2002hw). In [33], the authors conjectured the all-loop dilatation operator

was determined by the one-loop piece in the BMN limit, and it is this observation that

gives us one support for the assumption we have made here.

One can obtain the effective Hamiltonian for W field by treating Z as the normal matrix

background, that is, impose the commutation relation [Z,Z ] = 0 . The Hamiltonian (2.4)

is invariant under the SU(N) transformations Z → UZU † and W → UWU †, and we can

use this symmetry to diagonalize the background matrix Z as

Z → UZU † = diag(z1, . . . , zN ). (2.7)

The same gauge transformation takes W fields to UWU †, which we will again denote as

W . The effective Hamiltonian for W is then follows from the transformed potential

V =
g2
YM

2π2

N
∑

i,j=1

|zi − zj |2 W i
jW

j
i , (2.8)

as

HW = 2
N

∑

i,j=1

[

1

2
(ΠW )ij(ΠW )ji +

1

2
ω2

ij W i
jW

j
i

]

=
N

∑

i,j=1

ωij

[

(W†)ij(W)ji + (W†
)ij(W)ji

]

,

(2.9)

where we defined the (effective) creation-annihilation operators for W as

(W†)ij =

√

ωij

2

(

W i
j − i

(ΠW )ij
ωij

)

, (W)ij =

√

ωij

2

(

W
i
j + i

(ΠW )ij
ωij

)

, (2.10)

(W†
)ij =

√

ωij

2

(

W
i
j − i

(ΠW )ij
ωij

)

, (W)ij =

√

ωij

2

(

W i
j + i

(ΠW )ij
ωij

)

, (2.11)

with the frequency

ωij =

√

1 +
g2
YM

2π2
|zi − zj|2 . (2.12)

In deriving (2.9), the zero-point energy was supposed to be canceled by the fermions. The

creation-annihilation operators (2.10) and (2.11) satisfy the commutation relations

[(W)ij , (W†)kl ] = [(W)ij , (W†)kl ] = δi
lδ

k
j , otherwise 0 , (2.13)

and any SU(2) operators are in one-to-one correspondence with operators that act on the

Hilbert space defined by the Hamiltonian (2.9), e.g.,

tr(ZZWZWZ · · · ) tr(WZZZ · · · ) ↔ tr(zzW†zW†z · · · ) tr(W†zzz · · · ) |0〉W (2.14)

where |0〉W is the Fock vacuum for W , i.e., W |0〉W = W |0〉W = 0.

– 4 –
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We define the expectation value of the operator O for the state |φ〉 as

〈φ|O|φ〉 ≡

∫

∏

j
d2zj|ψ0({zj})|2〈φ|O|φ〉W

∫

∏

j
d2zj |ψ0({zj})|2〈φ|φ〉W

(2.15)

where ψ0({zj}) is the wavefunction for the fermionic ground state,

ψ0({zj}) =
∏

l<k

(zl − zk) exp
[

−
∑

k

|zk|2
]

, (2.16)

and 〈φ|O|φ〉W means the expectation value with respect to the operator W . In (2.16), the

Vandermonde determinant came from the change of integration variables from the original

matrix Z to the eigenvalues {zj}. It is well-known the distribution of the eigenvalues {zj}
for the 1/2 BPS ground state in the large N limit is given by a circular droplet, and it can

be shown the radius r0 of the droplet is
√

N/2 in our normalization. Therefore in the large

N limit, the integration over {zj} in (2.15) can be re-expressed as the integration over the

droplet,

〈φ|O|φ〉 =

∫

D

∏

j
d2zj〈φ|O|φ〉W

∫

D

∏

j
d2zj〈φ|φ〉W

(2.17)

where D stands for the circular droplet with radius r0 =
√

N/2.

2.2 BMN strings and giant magnons as string-bits

The BCV method ignores higher order interactions in the potential (2.6), which implies the

method is only valid for large value of the ’t Hooft coupling λ . There are two interesting

limit we can consider in this setup: One is the BMN limit [9] where the SYM single-trace

composite operator is made up of many Zs and few W s, see (2.24) below. The other is the

recently invented Hofman-Maldacena limit [10], where the number of Zs goes to strictly

infinity so that we can relax the trace condition, while λ is kept fixed, see (2.29). The

classical strings dual to these states are called giant magnons. As discussed in [3, 11], both

the BMN strings and the giant magnons can be expressed in terms of the string-bits in the

matrix model. Below we will briefly review them in turn, which would help us generalize

the idea to what we will call “bound string-bits” picture later.

BMN strings. First let us review the BMN case. The corresponding states in the matrix

model is given by

|p〉 =

L
∑

l=0

eipl
∑

j1,j2

(zj1)
l(W†)j1j2(zj2)

L−l(W†)j2j1 |0〉W , (2.18)

where the two magnons or string-bits have real quasi-momenta ±p. The energy of the

BMN states (2.18) is evaluated as

Etot. = L + 〈Eosc.〉 . (2.19)

– 5 –
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Figure 1: A BMN string (left) and a giant magnon (right) as string-bits on a circular droplet of

radius r0 =
√

N/2. In both cases the arrow indicates the sign of quasi-momenta, exp(ip) = zj2/zj1 .

Here L is the contribution from the background field Z which is supposed to be very large

∼
√

λ, while the second term is the average energy of the effective Hamiltonian (2.9) with

respect to the state (2.18),

〈Eosc.〉 = 〈p|HW |p〉 =

∫

D

∏

j
d2zj 〈p|HW |p〉W

∫

D

∏

j
d2zj 〈p|p〉W

. (2.20)

By using the commutation relation (2.13) for W† and W, explicitly it reads

〈Eosc.〉 =

∫

D

∏

j
d2zj

∑

j1,j2

2ωj1j2

∣

∣

∣

∣

L
∑

l=0

(

eip zj1
zj2

)l
zL
j2

∣

∣

∣

∣

2

∫

D

∏

j
d2zj

∑

j1,j2

∣

∣

∣

∣

L
∑

l=0

(

eip zj1
zj2

)l
zL
j2

∣

∣

∣

∣

2 . (2.21)

In the above, we have the factor 2 in the numerator since there are two string-bits joining

the eigenvalues zj1 and zj2. We evaluate the integrations over the eigenvalues by using

a saddle point approximation just as was done in [3]. Then it is easy to see the sum

over l squared in (2.21) is sharply peaked when zj1 and zj2 are related to the magnon

quasi-momentum p as

eip =
zj2

zj1

. (2.22)

Moreover, since we are taking L → ∞, both eigenvalues zj1 and zj2 will localize on the

edge of the droplet, and become “BPS condensates” [11] with infinitely many Zs, i.e.,

|zj1| = |zj2 | = r0 so that the length of the string-bit becomes |zj1 − zj2 | = 2r0 sin (p/2) .

See the left of figure 1 for the diagram. Taking all into consideration, we obtain

〈Eosc.〉 = 2

√

1 +
g2
YM

2π2

(

2r0 sin
(p

2

))2
= 2

√

1 +
λ

π2
sin2

(p

2

)

, (2.23)
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where we have used r0 =
√

N/2 and λ = g2
YMN . Finally, taking the BMN limit,

L → ∞ , λ → ∞ , p ∼ 2πn

L
→ 0 , n : fixed ,

λ

L2
: fixed ¿ 1 . (2.24)

we arrive at the famous BMN formula [9] with mode number n,

Etot. = L + 2

√

1 +
n2λ

L2
. (2.25)

Giant magnons. Next let us see another interesting example known, that is the giant

magnon. The relevant state takes the form

|p〉 =

L/2
∑

x=−L/2

eipx
∑

j1,j2

(zj1)
(L/2)+x(W†)j1j2(zj2)

(L/2)−x |0〉W . (2.26)

This corresponds to a SYM state with a single magnon propagating in sea of infinitely many

Zs, and the asymptoticity allows us to consider a state with nonzero quasi-momentum

p 6= 0. See the right of figure 1 for the diagram.

We can evaluate the energy of the state (2.26) in much the same way as the BMN

strings. In this giant magnon case we have for the average energy

〈Eosc.〉 =

∫

D

∏

j
d2zj

∑

j1,j2

ωj1j2

∣

∣

∣

∣

∑

x
z

L/2
j1

(

eip zj1
zj2

)x
z

L/2
j2

∣

∣

∣

∣

2

∫

D

∏

j
d2zj

∑

j1,j2

∣

∣

∣

∣

∑

x
z

L/2
j1

(

eip zj1
zj2

)x
z

L/2
j2

∣

∣

∣

∣

2 . (2.27)

Again, the saddle point condition (2.22) leads to the energy formula

Etot. = L +

√

1 +
λ

π2
sin2

(p

2

)

. (2.28)

If we further take the following Hofman-Maldacena limit,

L → ∞ , λ : fixed À 1 , p : fixed , Etot. − L : fixed , (2.29)

then the energy formula (2.28) reduces to the dispersion relation for the giant magnon [10]

having an infinite energy EGM and an infinite angular momentum J1 on an equator of S2

with angular difference of the two endpoints ∆ϕ,

EGM − J1 =

√
λ

π

∣

∣

∣

∣

sin

(

∆ϕ

2

)
∣

∣

∣

∣

. (2.30)

under the identifications Etot. ≡ EGM , L ≡ J1 and p ≡ ∆ϕ.

Thus far we have seen two successful examples of direct correspondence between clas-

sical strings and string-bits of the matrix model. They enabled us to encode, in addition

to the spacetime geometry of string theory, the excitations on it into the reduced matrix

quantum mechanical model obtained from the dual gauge theory.

– 7 –
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Let us summarize the points on what we have seen and what is already known about the

giant magnons vs. the (elementary) string-bit. In the SU(2) sector of the correspondence,

the edge of the circular droplet in the matrix model setup can be identified with the

equatorial circle of the two-sphere on which the string rotates. The giant magnon can

be identified with the single string-bit that joins the two eigenvalues zj1 and zj2 on the

edge, and the string energy is just the Euclidean distance between them [10]. The fact

that the endpoints of the giant magnon on the equator carry an infinite spin along the

equatorial circle corresponds to the infinitely many background matrices in (2.26), and the

angular distance between the string endpoints are identified with the magnon momentum.

It would be then natural to ask, when we consider the dyonic giant magnon case, where

in the droplet picture the second spin J2 enters in. In the next section, we will give the

answer for it. We will also discuss how folded/circular spinning string solutions of [29, 30]

(in a special infinite spin limit) would emerge from our matrix model as collections of many

string-bits.

3. Infinite spin limit of classical strings from matrices

In [15], the authors studied not only the dyonic giant magnons but also a special infinite

spin limit of folded and circular strings on R × S3 ⊂ AdS5 × S5 . It was shown that the

energy-spin relation for those solutions takes the following universal form

E − J1 =
√

J2
2 + k2λ , E , J1 → ∞ , J2 , λ : fixed , (3.1)

with a solution-dependent constant k . In the following subsections, we will see how one

can reproduce such special solutions via the matrix model metod.

3.1 Dyonic giant magnons as bound string-bits

So far we have discussed the cases where the SYM states had a single magnon with a

real quasi-momentum. In contrast to them, when we consider states with complex quasi-

momenta, it is possible they form a kind of boundstate. In the familiar Bethe ansatz

approach to the SYM spin-chain, boundstates can be defined by the pole condition for the

S-matrix [12], and the scattering phase-sfhit of the boundstates in the SU(2) sector of the

spin-chain was shown to match precisely with the one defined in the classical string theory

side under the right gauge choice [23, 24]. What we are going to investigate now is also

such magnon boundstates that each constituent magnon has a complex quasi-momentum in

general. However, they are different from the usual boundstates that are related to the poles

of S-matrices of an integrable spin-chain in that they will be defined without the apparent

need of such integrable structure. See also the discussion in section 4. Thus we will refer

to the chain of string-bits that minimizes the expectation value of the Hamiltonian (2.9)

as a “bound string-bits” rather than a boundstate.

One might wonder such bound string-bits would require us to take into account the

finite ni effect of the BPS condensates Zni in the SYM states, which would make the

problem much harder to tackle on. To avoid such finite cluster effects, we will again work

– 8 –
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in the strict Hofman-Maldacena limit where we can ignore the finite L corrections. Since

the “length” of the state is infinite in this limit, the number of Zs between two adjacent W s

at sites xi and xi+1, that is ni, can take values from zero to infinity as we will see below,

and it is this feature that still makes in this many-magnon case also some “classical”

configurations of string-bits possible. Our aim here is to show how we can define such

bound string-bits in the reduced matrix quantum mechanics setup, especially the state

that should be dual to the dyonic giant magnons of string side.

Let us start with defining the relevant states. The Q-magnon state in momentum basis

will take the following Fourier-transformed form

|p1, . . . , pQ〉 =
∑

x1<···<xQ

exp
(

i

Q
∑

a=1

paxa

)

|x1, . . . , xQ〉 , (3.2)

with |x1, . . . , xQ〉 =
∑

j1,...,jQ+1

(zj1)
n1+x1(W†)j1j2(zj2)

x2−x1−1 . . .

. . . (zjQ
)xQ−xQ−1−1(W†)

jQ

jQ+1
(zjQ+1

)nQ+1−xQ |0〉W . (3.3)

The exponents of the two outmost eigenvalues are supposed to scale as L, and we explicitly

set them as

n1 = nQ+1

=
1

2
(L + Q − 1) . (3.4)

The state (3.2) is simply a generalization of a BMN or a single-spin giant magnon case to a

many-magnon case, only now with a set of complex momenta {pa}. As in the giant magnon

case studied in the previous section, since we consider asymptotic states (i.e., L → ∞),

the trace condition is relaxed so that states with non-zero total momentum is allowed. The

average energy of the state (3.2) can be written as Etot. = L + 〈Eosc.〉 with

〈Eosc.〉 = 〈{pa}|HW |{pa}〉

=

∫

D

∏

j
d2zj 〈{pa}|HW |{pa}〉W

∫

D

∏

j
d2zj 〈{pa}|{pa}〉W

. (3.5)

Explicitly we have in the above

〈{pa}|HW |{pa}〉W =
∑

{xa},{x′

a}
exp

[

i
∑

a

(−pax
′
a + paxa)

]

〈{x′
a}|HW |{xa}〉W , (3.6)
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where

〈{x′
a}|HW |{xa}〉W =

∑

{jm},{j′m}
(ωj1j2 + ωj2j3 + · · · + ωjQjQ+1

) ×

× (zj1)
n1+x1(zj2)

x2−x1−1 . . . (zjQ
)xQ−xQ−1−1(zjQ+1

)nQ+1−xQ ×
× (zj′

1
)n1+x′

1(zj′
2
)x

′

2
−x′

1
−1 . . . (zj′Q

)x
′

Q−x′

Q−1
−1(zj′Q+1

)nQ+1−x′

Q ×

× W 〈0|(W)
j′2
j′
1

(W)
j′3
j′
2

. . . (W)
j′Q+1

j′Q
(W†)j1j2(W

†)j2j3 . . . (W†)
jQ

jQ+1
|0〉W

=
∑

{jm}
(ωj1j2 + ωj2j3 + · · · + ωjQjQ+1

) ×

× (zj1)
n1+x1(zj2)

x2−x1−1 . . . (zjQ
)xQ−xQ−1−1(zjQ+1

)nQ+1−xQ ×
× (zj1)

n1+x′

1(zj2)
x′

2−x′

1−1 . . . (zjQ
)x

′

Q−x′

Q−1
−1(zjQ+1

)nQ+1−x′

Q + . . . .

(3.7)

In (3.7), the last dots represents terms that vanish when we integrate over z, and in what

follows we will omit them. Substituting (3.6) and (3.7) into (3.5), we obtain

〈Eosc.〉 =

Q
∑

m=1

εm (3.8)

where εm is the contribution from the string-bit joining m-th and (m + 1)-th eigenvalues,

εm =

∫

D

∏

j
d2zj

∑

{jn}
ωjmjm+1

∣

∣

∣

∣

∣

∑

{xa}
(zj1)

n1

Q
∏

k=1

[(

eipk
zjk

zjk+1

)xk
]

(zjQ+1
)nQ+1

∣

∣

∣

∣

∣

2

∫

D

∏

j
d2zj

∑

{jn}

∣

∣

∣

∣

∣

∑

{xa}
(zj1)

n1

Q
∏

k=1

[(

eipk
zjk

zjk+1

)xk
]

(zjQ+1
)nQ+1

∣

∣

∣

∣

∣

2 . (3.9)

We evaluate these integrals over z in much the same way as in the previous section. For

notational simplicity, let us introduce abbreviated notations pm ≡ pjm and zm ≡ zjm. The

saddle point (stationary phase) conditions for this many-magnon case become

eipk
zk

zk+1
= 1 i.e., eipk =

zk+1

zk
for k = 1, . . . , Q . (3.10)

Since we are working in the limit L → ∞, the outmost eigenvalues z1 and zQ+1 are localized

on the edge of the circular droplet, which implies the total quasi-momentum P ≡ ∑Q
m=1 pm

is real, |eiP | = |zQ+1|/|z1| = 1 . In other words, P is the azimutal angle between z1 and

zQ+1 in the droplet, see the left diagram of figure 2. The rest Q − 1 eigenvalues can

reside in the interior of the droplet, |zk| ≤ r0 (k = 2, . . . , Q), which reflects the fact the

quasi-momenta generally have imaginary parts in our bound string-bit case.

In general, the chain of line segments, or string-bits, joining zm and zm+1 (m =

1, . . . , Q) successively form an open zig-zag line as shown in the left of figure 2. Let us now

recall that dyonic giant magnons correspond to BPS boundstates in an asymptotic SYM

spin-chain with centrally-extended supersymmetry algebra (PSU(2|2) × PSU(2|2)) n R
3.

– 10 –



J
H
E
P
0
3
(
2
0
0
7
)
0
7
7

Figure 2: Left diagram shows the generic state while the right shows the lowest energy state for

given total quasi-momenta P and the number of string-bits Q. For the latter case, all eigenvalues

{zjm
} are equally spaced on one and the same line segment joining two eigenvalues on the edge of

the droplet of radius r0 =
√

N/2 . In the main text we also use abbreviated notations zm ≡ zjm
.

With this in mind, it is plausible in our matrix model case also the corresponding string-

bits configuration is associated with a special set of quasi-momenta {pa} which minimizes

the total energy of the string-bits. Such a set of quasi-momenta will determine the locations

of eigenvalues {zm} in the droplet uniquely for given number of string-bits (or magnons) Q

and the total momentum P . We will soon see this is indeed the case, and the configuration

with the lowest energy precisely reproduces the dispersion relation for the dyonic giant

magnons. It can be easily verified that the approximated energy 〈Eosc.〉 in (3.8) takes its

minimum when

|z1 − z2| = · · · = |zQ − zQ+1| =
1

Q
|z1 − zQ+1| =

2r0

Q
sin

(

P

2

)

, (3.11)

that is, all eigenvalues {zm} lie on one and the same line segment joining two points on

the circle, and they are all equally spaced (see the right of figure 2). This condition along

with the limit

L → ∞ , Q ∼
√

λ : fixed À 1 , P : fixed , (3.12)

leads to the following energy formula

Etot. − L
∣

∣

∣

min
= 〈Eosc.〉min = Q ×

√

1 +
g2
YM

2π2

(

2r0

Q
sin

(

P

2

))2

=

√

Q2 +
λ

π2
sin2

(

P

2

)

,

(3.13)

which precisely reproduces the energy-spin relation for the dyonic giant magnons (1.2)

under the identifications Q ≡ J2 , Etot. ≡ EDGM , L ≡ J1, and P ≡ ∆ϕ. It also matches

with the exact BPS dispersion relation for Q-magnon boundstates in the asymptotic N = 4

SYM spin-chain, which can be obtained from purely group theoretical means [34].4 Note

4 Supersymmetry alone can only determine the form of the dispersion to be ∆ − J1 =q
J2

2 + f(λ) sin2
`

P
2

´
, and one has to take into account the known perturbative results of SYM theory
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also that we could have considered Q ¿
√

λ region with λ large but finite. In this case the

dispersion relation (3.13) reduces to the one for the single-spin giant magnon case (2.30),

which simply measures the distance between the two endpoint of the straight stick.

In summary, we argue that the degree of freedom of the second spin J2 of the dyonic

giant magnons, which is orthogonal to the first, infinite spin J1 along the equator, appears

in the matrix model setup as the number of line segments with equal length. It is obtained

by dividing the straight line joining two eigenvalues on the edge of the circular droplet into

J2 pieces with equal length as (3.11). The angular difference between the two outmost

eigenvalues P corresponds to the angular difference between the endpoints of the dyonic

giant magnon ∆ϕ, as is the case with the single-spin giant magnon.

3.2 Infinite spin limit of folded/circular strings

Having worked out the generalities, we can now straightforwardly apply the arguments

to other interesting string solutions, that are the special infinite spin limit of folded and

circular spinning strings [15]. Let us parametrize the metric of R × S3 in AdS5 × S5 as

ds2
R×S3 = −dt2 + dθ2 + sin2 θdϕ2

1 + cos2 θdϕ2
2 . (3.14)

The folded and circular strings are obtained by imposing appropriate ansatze on

(t, θ, ϕ1, ϕ2) .

J1 À J2 limit of elliptic folded/circular strings. First let us see the cases of two-

spin elliptic strings. Among them, two well-known examples are the folded and the circular

strings studied in [29, 30].

The profile of the folded string solution is given by, setting the number of folds one,

t = κτ , cos θ(σ) = dn(Aσ, q) , sin θ(σ) =
√

q sn(Aσ, q) , ϕj = wjτ (j = 1, 2) ,

(3.15)

with A ≡
√

w2
1 − w2

2 . Here the elliptic moduli q is related to other parameters as

q ≡ sin2 θ∗ =
κ2 − w2

2

w2
1 − w2

2

. (3.16)

where θ∗ is a parameter that fixes the range of the folded string as −θ∗ ≤ θ ≤ θ∗ . The

energy E and the two spins J1 and J2 are defined as

E =
√

λκ , J1 =
√

λw1

∫ 2π

0

dσ

2π
sin2 θ , J2 =

√
λw2

∫ 2π

0

dσ

2π
cos2 θ , (3.17)

and satisfy the following pair of transcendental equations
(

E

K(q)

)2

−
(

J2

E(q)

)2

=
4λ

π2
q ,

(

J1

K(q) −E(q)

)2

−
(

J2

E(q)

)2

=
4λ

π2
, (3.18)

to obtain f(λ) = λ/π2 (which is known to be vald at least up to the three-loop order), which matches

with (1.2) or (3.13).
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where K(q) and E(q) are the standard complete elliptic integrals of the first and the

second kind.5 By eliminating K(q) in (3.18) and taking q → 1 (i.e., θ∗ → π/2) limit,

where K(q) → ∞ and E(q) → 1, we arrived at [12, 15]

E − J1 =

√

J2
2 +

4λ

π2
. (3.19)

It can be shown that the same expression for the energy-spin relation results from the

infinite spin limit of the circular solution case, whose profile is given by

t = κτ , cos θ(σ) = cn(Aσ, q̃) , sin θ(σ) = sn(Aσ, q̃) , ϕj = wjτ (j = 1, 2) . (3.20)

Here the moduli for the circular case is related to the one in the folded case as q̃ = 1/q .

Evaluating the circular counterparts of (3.18) (with the global charges defined as (3.17))

(

E

K(q̃)

)2

−
(

q̃J2

(1 − q̃)K(q̃) − E(q̃)

)2

=
4λ

π2
,

(

q̃J1

K(q̃) − E(q̃)

)2

−
(

q̃J2

(1 − q̃)K(q̃) − E(q̃)

)2

=
4λ

π2
q̃ , (3.21)

one is again end up with the same energy-spin relation as (3.19) in the q̃ → 1 limit.

This reflects the fact that the limiting behaviors of the folded and the circular strings are

identical, or more precisely, the configurations can be switched from one to another without

energy cost.

Since we have already seen the generic case of dyonic giant magnons in the previous

subsection, it is almost trivial to understand how one can reproduce the infinite spin limit

of these elliptic folded/circular solutions as a chain of string-bits. They are made up of

two copies of dyonic giant magnons with P = π, and the corresponding configurations of

J2 string-bits are given by the left diagram of figure 3. All the J2 eigenvalues are located

on one and the same diameter of the circular droplet with equal spacing, and reflecting

the closedness of the strings, the string-bits associated with them also form closed chains.

The energy of the closed chain can be evaluated as, noticing that the distance between two

adjacent eigenvalues are given by 2r0/(J2/2) ,

J2 ×
√

1 +
g2
YM

2π2

(

2r0

J2/2

)2

=

√

J2
2 +

4λ

π2
, (3.22)

which matches with the string theory result (3.19). For a generic n-fold case we just need

to multiply λ in the dispersion relation (3.19) (or (3.22)) by n2.

5 Our convention for the complete elliptic integrals of the first and the second kind are as follows:

K(q) ≡

Z
1

0

dxp
(1 − x2) (1 − qx2)

=

Z π/2

0

dϕp
1 − q sin2 ϕ

,

E(q) ≡

Z 1

0

dx

r
1 − qx2

1 − x2
=

Z π/2

0

dϕ

q
1 − q sin2 ϕ .

Note the parameter A in the profile of folded/circular strings can be written as A = 2

π
K(q) .
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Figure 3: J1 À J2 (∼
√

λ À 1) limit of elliptic folded/circular strings (left) and a rational circular

string (right) as closed chains of string-bits on a circular droplet of radius r0 =
√

N/2 . The rotation

about the origin of the droplet is generated by J1 charge, and the number of eigenvalues that form

the hain of string-bits is J2, which is a continuous variable in classical string theory.

J1 À J2 limit of rational circular strings. Next let us see the case of a rational

circular (or a simplest circular) string. This solution follows from the ansatz

t = κτ , θ = θ0 = const., ϕj = wjτ + mjσ (j = 1, 2) . (3.23)

and the global charges are given by

E =
√

λκ , J1 =
√

λw1 sin2 θ0 , J2 =
√

λw2 cos2 θ0 . (3.24)

It can be shown that in m2/m1 → −∞ (θ0 → π/2) limit, the energy-spin relation for the

limiting rational string becomes [15]

E − J1 =
√

J2
2 + n2λ , (3.25)

where we have denoted n ≡ m1 .

In this rational circular case also one can obtain a string-bits configuration whose

dispersion relation exactly reproduces the energy-spin relation for the corresponding string.

See the right of figure 3. All the J2 eigenvalues that form a closed chain of string-bits are

equally spaced on the perimeter of the circular droplet. Let n be the number of windings

along the circuit (which should be identified with the winding number for the circular

string), then the energy of the closed chain can be evaluated as

J2 ×
√

1 +
g2
YM

2π2

(

2r0 sin

(

πn

J2

))2

=

√

J2
2 +

J2
2λ

π2
sin2

(

πn

J2

)

≈
√

J2
2 + n2λ , (3.26)

which precisely reproduces (3.25) in the limit J2 À 1 with fixed n .

Note also the J1 À J2 limit of the rational circular string can be regarded as an

infinite array of infinitesimal dyonic giant magnons, which is also a limiting case of a so-

called “helical” string [19]. In fact, in this way we can interpret the configuration of figure 3
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more easily as the classical string. Let n be the number of windings along the equator of

S3 when σ goes from 0 to 2π, and p be the angular difference associated with each dyonic

giant magnon. Then the number of magnons is given by m = 2πn/p , and the energy-spin

relation for the array of magnons is computed as, denoting its total energy and two spins

as E (→ ∞), J1 (→ ∞), and J2 (∼
√

λ : fixed), respectively,

E − J1 = lim
m→∞
n : fixed



m ×
√

(

J2

m

)2

+
λ

π2
sin2

(p

2

)



 =
√

J2
2 + n2λ , (3.27)

which matches with (3.25) and also with (3.26). which matches with (3.25) and also

with (3.26).

4. Summary and discussions

In this note, by using the reduced matrix quantum mechanics of [3, 11], we showed the

particular distribution of eigenvalues (3.11), which we called “bound string-bits”, can be

identified with a classical string known as a dyonic giant magnon. We proposed the lowest

energy configuration of string-bits (3.11) under fixed P and Q be the matrix model dual of

the dyonic giant magnons, reproducing the dispersion relation as (3.13). We also showed

special infinite spin limits of folded/circular strings of elliptic types and also the rational

circular string can be described as closed chains of string-bits.

In any case, what was surprising is that the configurations of string-bits can be viewed

as the “shadows” of the corresponding strings on S5 projected onto the equatorial circle,

which can be identified with the circular droplet of eigenvalues.6 The center of the circular

droplet (or the origin of the LLM coordinate) corresponds to the northern and southern

poles of the sphere. Thus via the BCV approach we could see not only the emergence of

geometries [3] but also of further examples of emergent classical strings than ever known.

The BMN strings and giant magnons were already obtained in [3, 11], and in this note we

have added to the dictionary two-spin examples: the dyonic giant magnons, the elliptic

folded/circular strings and the rational circular strings in the infinite spin limit. The latter

examples can be obtained from the dyonic giant magnons as we have seen in section 3.2.

Among many possible further directions, it is important to extend the analysis to finite

L case, taking into consideration the finite size effect. Obviously there are two sources for

this effect. One is the correction coming from the approximation we used. Recall that in

evaluating the energy for each string-bit (3.9), we employed saddle point approximations.

6To see this for the dyonic giant magnon case, let us choose a rotating frame on the sphere where the

point with infinite J1 is stationary, that is, parametrize the profile of the string by eZ1 = e−itZ1 and Z2,

where Zj (j = 1, 2) are the ones used in [13], see Eqn (39) in their paper. Setting eZ1 = eX1 + i eX2, we see

that − eX2 = k
‹√

1 + k2 = cos(p/2) is constant in σ and τ , which means the “shadow” of the dyonic giant

magnon projected onto the eX1- eX2 plane is just a straight stick connecting two points on the equatorial

circle of S3, as shown in the right of figure 2.

– 15 –



J
H
E
P
0
3
(
2
0
0
7
)
0
7
7

The sum in | . . . |2 in (3.9) in the large L limit becomes, roughly,
∣

∣

∣

∣

∣

∣

∑

{xa}
(zj1)

n1

Q
∏

k=1

[(

eipk
zjk

zjk+1

)xk
]

(zjQ+1
)nQ+1

∣

∣

∣

∣

∣

∣

2

∼ r
2(L+Q−1)
0

Q
∏

k=1

∣

∣

∣

∣

sin (wkL/2)

sin (wk/2)

∣

∣

∣

∣

2

,

where eiwk ≡ eipk
zjk

zjk+1

, (4.1)

which is the Laue function for Q-dimensional crystal lattice. The approximation that lead

to (3.10) amounts to take account of only the leading Laue peaks in both the denominator

and the numerator, and throw away the other smaller peaks. Taking into account of

those smaller peaks will enable us to evaluate the finite size correction to the “classical”

energy (3.13). The other source is the backreaction of the chain of string-bits to the

geometry made up of the background field Z. Since the effect of the backreaction is

entangled with the 1/
√

λ correction, the quadratic Hamiltonian we started with will fail

to capture the correct physics in the finite L region; rather we will have to include in

the Hamiltonian the higher order interactions. It would not be an easy task to take into

account all those finite L corrections consistently, but if successfully done, then one might

be even able to compare the result with the finite-size corrected (dyonic) giant magnons

of [14, 19].

It is also interesting to investigate other space-time geometries such as AdS5 × Y p,q

in this direction. Not only the geometries themselves but also the excitations on them

are important objects to investigate. As a simple example, below we will show how giant

magnons in Lunin-Maldacena background [35] emerges as string-bits in the matrix model.

This background is conjectured to be dual to the special case of β-deformed N = 4 SYM

theory of Leigh and Strassler [36], which has N = 1 supersymmetry. For simplicity, take

β parameter to be real for now, then the potential term in the β-deformed SU(2) sector is

simply given by

Vβ =
g2
YM

2π2
tr

(

|[Z,W ]β |2
)

, [Z,W ]β ≡ ZW − e−2πiβWZ . (4.2)

In β → 0 limit, this reduces to the undeformed potential of (2.6). The frequency for each

string-bit becomes

ωjmjm+1,β =

√

1 +
g2
YM

2π2

∣

∣zjm − e−2πiβzjm+1

∣

∣

2
, (4.3)

and the saddle point condition is given by eip̃m = ei(pm+2πβ) = zjm+1
/zjm for this β-

deformed case. Here p̃m denotes the quasi-momentum in the deformed theory and pm does

the original one. We obtain the minimized energy of the chain of Q string-bits,

Etot.
β − L

∣

∣

∣

min
=

√

Q2 +
λ

π2
sin2

(

P

2
+ πQβ

)

, (4.4)

where P =
∑Q

m=1 pm as before. As can be seen in the above, the twisting effect of β

parameter in the potential only results in the shift of the quasi-momentum of the magnon.7

7 The Q = 1 case was already displayed in [4].
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This observation agrees with the one made in the Bethe ansatz approach [37], where the

corresponding spin-chain was an XXX1/2 spin-chain with a twisted boundary condition.

The dispersion relation (4.4) can be also compared to the energy-spin relations for the two-

spin giant magnons obtained in [25, 17].8 It is interesting to note that the shifting operation

in the TsT-transformation [38], which is an U(1) rotation along one of the isometries of

S5, can thus be directly identified in the droplet plane or the LLM plane.

In closing, we would like to make some comments on integrability issue. It has been

recently shown that dyonic giant magnon corresponds to a magnon boundstate in the

Beisert-Dippel-Staudacher (BDS) spin-chain [39] of N = 4 SYM theory. Turning back

to the matrix models, as is also well-known, the SU(2) matrix model has very similar

integrable structure as the mother N = 4 theory. In fact the phase-function for the model

is conjectured to be exactly the same as the N = 4 SYM S-matirx of BDS and also the

string S-matrix of Arutyunov-Frolov-Staudacher (AFS) [40], the difference of those three

S-matrices (matrix model, BDS, AFS) being only the overall phase factors called dressing

factors [41]. Therefore it would be natural to expect a possible interpretation of our bound

string-bits in terms of magnon dynamics in the N = 4 theory.

As in the BDS case, generic Q-magnon boundstate in the SU(2) matrix model can

be defined by the pole condition for the conjectured S-matrix in the matrix model. It

reads ϕ(pj) − ϕ(pj+1) = i (j = 1, . . . , Q − 1) in terms of the phase-function ϕ(pj) =
1
2 cot

(pj

2

)

√

1 + λ
π2 sin2

(pj

2

)

with the complex quasi-momenta {pj}. Comparing this with

the lowest energy distribution of eigenvalues (3.11), one might be tempted to expect a

close relation between the phase-function variables ϕ(pj) that form a Bethe string and the

eigenvalues zj that form a chain of string-bits. In fact the condition (3.11) coincides with the

pole conditions for the S-matrix of one-loop gauge theory, which has the same integrability

as Heisenberg spin-chain. At the one-loop level, the BDS phase-function ϕ(p) reduces to

ϕ0(p) = 1
2 cot

(p
2

)

, with which the pole condition ϕ0(pj) − ϕ0(pj+1) = i (j = 1, . . . , Q − 1)

exactly matches with the condition z1−z2 = · · · = zQ−zQ+1 up to the degree of freedom of

rotating the droplet plane. Notice that, however, our “bound string-bits” has been defined

such that it minimizes the energy of the chain of string-bits under the condition of fixed

total quasi-momentum and fixed number of constituent magnons, and it is not, at least

apparently, a consequence of any integrablity of the SU(2) matrix model. In this regard,

it is not surprising if it turned out the boundstates defined as poles of S-matrix in the

SU(2) matrix model or the BDS spin-chain do not correspond to our bound string-bits

in a direct manner. Actually it can be verified that the set of quasi-momenta {pj} that

defined the straight stretched line segment joining z1 and zQ+1 does not satisfy the BDS

pole conditions in the strong coupling.

As yet we have no clear answer as to whether our bound string-bits can be defined

by some requirement related to integrability. We hope to report on this as another

8 By relating the magnon quasi-momentum, the deformation parameter β and the parameter that de-

termines the string configuration in a particular way, the authors of [25, 17] derived a dispersion relation

of the form E − J1 =
q

J2
2 + λ

π2 sin2
`

P
2
− πβ

´
. It is different from what we have obtained in the above,

except the elementary magnon case J2 = Q = 1.
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publication in the future.

Acknowledgments

The authors would like to thank H.-Y. Chen, D. H. Correa, R. Suzuki and S. E. Vázquez

for their valuable comments and discussions.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[2] D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125

[hep-th/0507203].

[3] D. Berenstein, D.H. Correa and S.E. Vazquez, All loop BMN state energies from matrices,

JHEP 02 (2006) 048 [hep-th/0509015].

[4] D. Berenstein and D.H. Correa, Emergent geometry from q-deformations of N = 4 super

Yang-Mills, JHEP 08 (2006) 006 [hep-th/0511104].

[5] D. Berenstein and R. Cotta, Aspects of emergent geometry in the AdS/CFT context, Phys.

Rev. D 74 (2006) 026006 [hep-th/0605220].

[6] H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP

10 (2004) 025 [hep-th/0409174].

[7] D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018

[hep-th/0403110].

[8] S.E. Vazquez, Reconstructing 1/2 BPS space-time metrics from matrix models and spin

chains, hep-th/0612014.

[9] D. Berenstein, J.M. Maldacena and H. Nastase, Strings in flat space and pp waves from

N = 4 super Yang-Mills, emphAIP Conf. Proc. 646 (2003) 3.

[10] D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095

[hep-th/0604135].

[11] S.E. Vazquez, BPS condensates, matrix models and emergent string theory, JHEP 01 (2007)

101 [hep-th/0607204].

[12] N. Dorey, Magnon bound states and the AdS/CFT correspondence, J. Phys. A 39 (2006)

13119–13128 [hep-th/0604175].

[13] H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024

[hep-th/0605155].

[14] G. Arutyunov, S. Frolov and M. Zamaklar, Finite-size effects from giant magnons,

hep-th/0606126.

[15] J.A. Minahan, A. Tirziu and A.A. Tseytlin, Infinite spin limit of semiclassical string states,

JHEP 08 (2006) 049 [hep-th/0606145].

[16] M. Spradlin and A. Volovich, Dressing the giant magnon, JHEP 10 (2006) 012

[hep-th/0607009].

– 18 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://jhep.sissa.it/stdsearch?paper=01%282006%29125
http://arxiv.org/abs/hep-th/0507203
http://jhep.sissa.it/stdsearch?paper=02%282006%29048
http://arxiv.org/abs/hep-th/0509015
http://jhep.sissa.it/stdsearch?paper=08%282006%29006
http://arxiv.org/abs/hep-th/0511104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C026006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C026006
http://arxiv.org/abs/hep-th/0605220
http://jhep.sissa.it/stdsearch?paper=10%282004%29025
http://jhep.sissa.it/stdsearch?paper=10%282004%29025
http://arxiv.org/abs/hep-th/0409174
http://jhep.sissa.it/stdsearch?paper=07%282004%29018
http://arxiv.org/abs/hep-th/0403110
http://arxiv.org/abs/hep-th/0612014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C13095
http://arxiv.org/abs/hep-th/0604135
http://jhep.sissa.it/stdsearch?paper=01%282007%29101
http://jhep.sissa.it/stdsearch?paper=01%282007%29101
http://arxiv.org/abs/hep-th/0607204
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C1311
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C1311
http://arxiv.org/abs/hep-th/0604175
http://jhep.sissa.it/stdsearch?paper=09%282006%29024
http://arxiv.org/abs/hep-th/0605155
http://arxiv.org/abs/hep-th/0606126
http://jhep.sissa.it/stdsearch?paper=08%282006%29049
http://arxiv.org/abs/hep-th/0606145
http://jhep.sissa.it/stdsearch?paper=10%282006%29012
http://arxiv.org/abs/hep-th/0607009


J
H
E
P
0
3
(
2
0
0
7
)
0
7
7

[17] N.P. Bobev and R.C. Rashkov, Multispin giant magnons, Phys. Rev. D 74 (2006) 046011

[hep-th/0607018].

[18] M. Kruczenski, J. Russo and A.A. Tseytlin, Spiky strings and giant magnons on S5, JHEP

10 (2006) 002 [hep-th/0607044].

[19] K. Okamura and R. Suzuki, A perspective on classical strings from complex sine-Gordon

solitons, Phys. Rev. D 75 (2007) 046001 [hep-th/0609026].

[20] C. Kalousios, M. Spradlin and A. Volovich, Dressing the giant magnon. II, hep-th/0611033.

[21] S. Hirano, Fat magnon, hep-th/0610027.

[22] S. Ryang, Three-spin giant magnons in AdS5 × S5, JHEP 12 (2006) 043 [hep-th/0610037].

[23] H.-Y. Chen, N. Dorey and K. Okamura, On the scattering of magnon boundstates, JHEP 11

(2006) 035 [hep-th/0608047].

[24] R. Roiban, Magnon bound-state scattering in gauge and string theory, hep-th/0608049.

[25] C.-S. Chu, G. Georgiou and V.V. Khoze, Magnons, classical strings and beta-deformations,

JHEP 11 (2006) 093 [hep-th/0606220].

[26] P. Bozhilov and R.C. Rashkov, Magnon-like dispersion relation from M-theory,

hep-th/0607116.

[27] P. Bozhilov, A note on two-spin magnon-like energy-charge relations from M-theory

viewpoint, hep-th/0612175.

[28] J. Maldacena and I. Swanson, Connecting giant magnons to the pp-wave: an interpolating

limit of AdS5 × S5, hep-th/0612079.

[29] S. Frolov and A.A. Tseytlin, Multi-spin string solutions in AdS5 × S5, Nucl. Phys. B 668

(2003) 77 [hep-th/0304255].

[30] S. Frolov and A.A. Tseytlin, Rotating string solutions: Ads/CFT duality in

non-supersymmetric sectors, Phys. Lett. B 570 (2003) 96 [hep-th/0306143].

[31] S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual

N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222].

[32] N.R. Constable et al., Pp-wave string interactions from perturbative Yang-Mills theory, JHEP

07 (2002) 017 [hep-th/0205089].

[33] N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super

Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060].

[34] H.-Y. Chen, N. Dorey and K. Okamura, The asymptotic spectrum of the N = 4 super

Yang-Mills spin chain, hep-th/0610295.

[35] O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry

and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086].

[36] R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional

N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121].

[37] S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for superconformal

deformations of N = 4 super Yang-Mills theory, JHEP 07 (2005) 045 [hep-th/0503192].

– 19 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C046011
http://arxiv.org/abs/hep-th/0607018
http://jhep.sissa.it/stdsearch?paper=10%282006%29002
http://jhep.sissa.it/stdsearch?paper=10%282006%29002
http://arxiv.org/abs/hep-th/0607044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C046001
http://arxiv.org/abs/hep-th/0609026
http://arxiv.org/abs/hep-th/0611033
http://arxiv.org/abs/hep-th/0610027
http://jhep.sissa.it/stdsearch?paper=12%282006%29043
http://arxiv.org/abs/hep-th/0610037
http://jhep.sissa.it/stdsearch?paper=11%282006%29035
http://jhep.sissa.it/stdsearch?paper=11%282006%29035
http://arxiv.org/abs/hep-th/0608047
http://arxiv.org/abs/hep-th/0608049
http://jhep.sissa.it/stdsearch?paper=11%282006%29093
http://arxiv.org/abs/hep-th/0606220
http://arxiv.org/abs/hep-th/0607116
http://arxiv.org/abs/hep-th/0612175
http://arxiv.org/abs/hep-th/0612079
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB668%2C77
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB668%2C77
http://arxiv.org/abs/hep-th/0304255
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB570%2C96
http://arxiv.org/abs/hep-th/0306143
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C5%2C809
http://arxiv.org/abs/hep-th/0111222
http://jhep.sissa.it/stdsearch?paper=07%282002%29017
http://jhep.sissa.it/stdsearch?paper=07%282002%29017
http://arxiv.org/abs/hep-th/0205089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB664%2C131
http://arxiv.org/abs/hep-th/0303060
http://arxiv.org/abs/hep-th/0610295
http://jhep.sissa.it/stdsearch?paper=05%282005%29033
http://arxiv.org/abs/hep-th/0502086
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB447%2C95
http://arxiv.org/abs/hep-th/9503121
http://jhep.sissa.it/stdsearch?paper=07%282005%29045
http://arxiv.org/abs/hep-th/0503192


J
H
E
P
0
3
(
2
0
0
7
)
0
7
7

[38] S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069

[hep-th/0503201].

[39] N. Beisert, V. Dippel and M. Staudacher, A novel long range spin chain and planar N = 4

super Yang-Mills, JHEP 07 (2004) 075 [hep-th/0405001].

[40] G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10

(2004) 016 [hep-th/0406256].

[41] T. Fischbacher, T. Klose and J. Plefka, Planar plane-wave matrix theory at the four loop

order: integrability without BMN scaling, JHEP 02 (2005) 039 [hep-th/0412331].

– 20 –

http://jhep.sissa.it/stdsearch?paper=05%282005%29069
http://arxiv.org/abs/hep-th/0503201
http://jhep.sissa.it/stdsearch?paper=07%282004%29075
http://arxiv.org/abs/hep-th/0405001
http://jhep.sissa.it/stdsearch?paper=10%282004%29016
http://jhep.sissa.it/stdsearch?paper=10%282004%29016
http://arxiv.org/abs/hep-th/0406256
http://jhep.sissa.it/stdsearch?paper=02%282005%29039
http://arxiv.org/abs/hep-th/0412331

